A1

1. (a) (i)
$$C_p = 2 + 4 = 6 \mu F$$

 $1/C = 1/2 + \frac{1}{4}$

(ii)

C1 $Cs = 4/3 = 1.33 \mu F$ **A**1

(ii)
$$Q = C_pV$$
 C1
= $6 \times 6 = 36 \mu C$ A1

(c)
$$E = \frac{1}{2} C_s V^2$$
 C1
= 24×10^{-6} A1

(d) (i) The capacitors discharge through the voltmeter. **B**1

(ii)
$$V = V_0 e^{-t/CR}$$

 $1/4 = e^{-t/(6 \times 12)}$ C1
 $\ln 4 = t / 72$ C1
 $t = 72 \ln 4 \approx 100 \text{ s}$ A1

 $Q_0 = CV = 1.2 \times 10^{-11} \times 5.0 \times 10^3 = 6.0 \times 10^{-8} C$ 2. 3

(b) (i)
$$RC = 1.2 \times 10^{15} \times 1.2 \times 10^{-11} \text{ or } = 1.44 \times 10^4 \text{ (s) (1)}$$

(ii)
$$I = V/R = 5000/1.2 \times 10^{15} \text{ or} = 4.16 \times 10^{-12} \text{ (A) (1)}$$

(iii)
$$t = Q_o/I$$
; $= 6 \times 10^{-8} / 4.16 \times 10^{-12} = 1.44 \times 10^4$ (s)

(iv)
$$Q = Q_0 e^{-1}$$
; $Q = 0.37Q_0$ so $Q lost = 0.63Q_0$

capacitors in parallel come to same voltage (1) (c) (i) so Q stored α C of capacitor (1) capacitors in ratio $10^{\hat{3}}$ so only $10^{-3}~Q_o$ left on football (1) 3

(ii)
$$V = Q/C = 6.0 \times 10^{-8} / 1.2 \times 10^{-8} \ or \ 6.0 \times 10^{-11} / 1.2 \times 10^{-11} \ or \ only \ 10^{-3}$$
 Q left so 10^{-3} V left; = 5.0 (V)

[14]

[12]

[11]

- 3. (a) (i) $Q = VC; W = \frac{1}{2} VC.V (= \frac{1}{2} CV^2) (2)$
 - (ii) parabolic shape passing through origin (1) plotted accurately as $W = 1.1 V^2 (1)$ 4

(b) (i)
$$T = RC$$
; = $6.8 \times 10^3 \times 2.2 = 1.5 \times 10^4 \text{ s} = 4.16 \text{ h}$

(ii)
$$\Delta W = \frac{1}{2} C(V_1^2 - V_2^2) = 1.1(25 - 16) ; = 9.9 (J)$$

(iii)
$$4 = 5 \exp(-t/1.5 \times 10^4)$$
; giving $t = 1.5 \times 10^4 \times \ln 1.25 = 3.3 \times 10^3$ (s)

(iv)
$$P = \Delta W/\Delta t = 9.9/3.3 \times 10^3 = 3.0 \text{ mW}$$
 ecf b(ii) and (iii) 1 allow $P = V_{av}^2/R = 4.5^2/6.8 \times 10^3 = 2.98 \text{ mW}$

4. (a) (i)

(1)				
capacitor	capacitance / μF	charge / μC	p.d. / V	energy / μJ
			= <i>Q/C</i>	$= \frac{1}{2} CV^2(1)$
X	5	30	= 6 (V) (1)	$= \frac{1}{2} \times 5 \times 6^2$
				= 90 (1)
		= CV		
Y	25	$=25\times6$	= 6 (V) (1)	= 450 (1)
		$=150 (\mu C) (1)$		
		30 + 150 =	= <i>Q/C</i>	
Z	10	180 (μC) (1)	= 180/10	= 1620 (1)
			=18(V)(1)	

Each box correctly calculated scores (1) + (1) for $\frac{1}{2}$ CV^2 9

(ii)
$$\mathbf{1}$$
 18 V + 6 V = 24 (V) (1)

2 $180 (\mu C) (1)$

3 180 / 24 = 7.5 (1)

4
$$90 + 450 + 1620 = 2160 \,(\mu J) \,(1)$$

- (b) (i) Kirchhoff's second law OR conservation of energy (1) 1
 - (ii) Kirchhoff's first law OR conservation of charge (1)

(c) (i) time constant =
$$CR$$
 (1)
= $7.5 \times 10^{-6} \times 200\ 000 = 1.5$ (s) (1)

(ii)
$$Q = Q_0 e^{-\frac{4CR}{CR}}$$
 (1)

$$Q/Q_0 = e^{-4} = 0.0183 (1)$$
 [19]

5. (i)
$$C_p = C + C = 6 \mu F$$
; $1/C_s = 1/2C + 1/C$; $= 3/2C$ giving $Cs = 2C/3 = (2 \mu F)$